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ABSTRACT

This report investigates the plane stress

capability of the FEARS (Finite Element Adaptive
Refinement Solver) program which features both
adaptive meshing and a posteriori error bounding.
Two benchmark plane stress problems were solved by
both the FEARS and NASTRAN (NASA Structural Analysis)
programs for comparison. This report presents only
the basic computational results. Other reports to
follow shortly will motivate the experimental proce-
dures, analyze the results, and provide the conclu-
sion.

ADMINISTRATIVE INFORMATION

This work was performed under the DTNSRDC's Independent Research Program,

Program Element 61152N, Task Area ZR0140201, 1YTNSRDC Work Unit 1844-140. A

contract arrangement was entered into with Prof. Babuska of the Institute for

Physical Science and Techmology, University of Maryland.

1. INTRODUCTION

This report presents the basic results of the numerical solutions of two

benchmark problems in plane elasticity. The purpose of this computation was

to compare the performance of the NASTRAN (NASA Structural Analysis) and FEARS

(Finite Element Adaptive Refinement Solver) programs. A subsequent report

will analyze the results and present conclusions.

Section 2 of this report describes the two benchmark problems. Section 3

briefly describes the use of the ASTRAN program to solve the two problems,

and also describes the data generator program, DONEW, used to prepare data

cards for NASTRAN. Section 4 presents the results obtained by N&STRAN for

both benchmark problems. Section 5 briefly describes the computation with the

FEARS program and Section 6 presents the basic results of the computation.

2. THE BENCHMARK PROBL4S

The two plane stress benchmark problems are illustrated in Figures I and

2. Figure I show the domain and the load on the sides of Problem 1. Because

the domain is symetric only the upper tight hand shaded portion need be

considered. We shall give the values of the parameters later.

1J
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Problem 2 uses the same configuration as problem I but with a crack in

the vertical direction. The length of the crack,X, is -(h-r). See Figure 2.

A detailed justification for the selection of these two problems vil be given

in a forthcoming report. The present investigation discusses the FEARS

program with respect to the presence of singularities in the geometry and the

solution. Problem I clearly degenerates as r approaches h, and Problem 2 has

a singular solution at the tip of the crack. Both Problems I and 2 are plane

stress problems where E, Young's modulus of elasticity, is 3.0 x 107 and v,

Poisson's ratio, is 0.3. These two problems are discussed individually in

more detail.

Problem 1.

The following parameters were used

h- I

= 6

p I 1 (normal stress)

The solution to problem I consists of the displacement vector

(u,v)T

and the tensor of stresses

1axy a yyJ

The problem is to find the solution (uv) T with sufficient accuracy with

respect to the energy norm and the stress concentration factor Z of the stress

a where
xx

max a
ph x

h-r

Problem 2.

Problem 2 has the same geometry as Problem 1, but with a crack of length

3



X. The following parameters were used

h-i

t 6

p I (normal stress)

r .7

x .15

The problem is to find the solution (uv) T and the stress intensity

factor, K, with sufficient accuracy. KI is the coefficient of the principal

singular part of the solution.

As before the problem involves the energy c and a constant, KI, the

stress intensity factor, defined to be the coefficient of the first singular

term of the solution at the tip of the crack.

For more information on the following formulas the reader is referred to

Pu, Hussain, et al. (21 and chapter 2 of Morosov and Nikischov [31. The

solution is singular at the tip of the crack. If we introduce polar coordi-

nates as shown in Figure 3 we obtain

Figure 3. Polar Cei-rdinate Scheme for Problem 2

4



u - F (0)
A6u

K1  (2)

where

E) 20Fu(0) - sin-(K + I - 2cos -) (3)

u 2

F(0) -cos (K - I + 2sin ) (4)

E
and G -2(1 + v) is the shear modulus.

In the case of plane stress

K=3 - v
+ V

These formulas allow us to compute KI in different ways. If 0 is (0,0)

and A (Lsine, Lcose) then we can appropriate K1 by

KI - (2G) [u(A) - u(O)] (5a)
F (e)

or

.2G nrv(A) - v(o)]

FV (e) (5b)

Here (u(O),v(O)) is the displacement of the tip of the crack and (u(L),v(L))

is the displacement of the grid point A located a distance L from the tip of

the crack and where the displacement vector makes an angle E with the y-axis,

as shown in Figure 3.

Si 5



Alternatively, another term can be added to the expansion of (u,v), that

is

u = C I + C2 f-+ C3r (6a)

v = C4 + C5  --+ c 6 r (6b)

where the C are functions of 0. If two collinear grid points make an angle 0

with the y-axis, and they are located at distances L and CL (where 0< <G)

K,=(2Go 2n)fu( L) - Eu(L)-(l - :)u(o5

or

K (2G %,2)v (CL) - Ev(L) - (i-) v(O)

W "- 0L F v(a)

(7b)

Finally K can also be computed by the energy method, When the energy

c of the solution is a function of the length of the crack X then

2

d 1 (8)
dX E

However, this computation requires a second finite element model where the

crack length has been changed by an amount dX.

3. DESCRIPTION (F NASTRAN COMPUTATION

A plane stress problem is input to NASTRAN via the "bulk data deck"

consisting of the grid, connection, force, constraint, and material properties

cards. The geometry of the problem is specified on the grid and connection

cards which must adhere to a rigid format decreed by NASTRAN. Since preparing

these cards by hand is both tedious and laborious a computer program, DONEW,

6



(a data generator) was written to generate the mesh from which these grid and

connection cards are produced. Often the data generator is a fairly complicated

program in its own right as in the present case.

The data generator DGNEW generates the meshes for both problems 1 and 2.

The parameters NI, N2 , r, h, £, a, and KK are read from tape 5 in free format.

N, is the number of partitions of side AB of subdomain Q1 (Figure 4b), and N2

is the number of partitions of side HG of subdomain 93 (Figure 4d). r is the

radius of the arc of the circle in subdomain 01 (Figure 4a). h is the length

of side HG of subdomain 03 (Figure 4a). Z is the length of side BDH (Figure

4a). a is the desired aspect ratio. If the value of the last parameter KK is

zero then it is assumed there is no crack. Otherwise the crack begins at the

node specified by the value of KK. DGNEW generates card images of the appro-

priate grid, connection, force, and constraint cards. A listing of DGNEW

which utilizes quarter points for the crack tip of problem 2, is given in the

appendix to this report.

The NASTRAN data deck also contains control cards pertaining to the

computation and to the printing of output. These cards must also adhere to a

specified NASTRAN format.

The NASTRAN IS2D8 element was used for these computations. It is the

usual two-dimensional, quadratic, isoparametric, plane stress element with

eight nodes, a so-called "serendipity" element. Stresses at the nodes are

extrapolated from stress computed on 3 x 3 array of Gauss integration points.

Elements of this type are of degree 2, that is, for a smooth solution and

uniform meshes whose elements are squares with sW'e h the rate of convergence

in the energy norm is O(h 2 ) - (l)where N is the number of degrees of freedom.,2/

For Problem 1 only elementiof this "serendipity" type were used. For

Problem 2 two different meshes were used. The first mesh consists entirely of

"serendipity" elements as described above. The second mesh consists of the

same "serendipity" elements except for those two elemets which have had the

"midpoints" of their two sides adjacent to the vertex (which is the tip of the

crack) changed into "quarter points". That is, on the two sides of these two

elements which intersect at the tip of the crack, the "midpoints" are now

located only a quarter of a length of their side away from the tip of the

crack, instead of half the length of their side. We shall refer to these

elements as "quarter-point 'serendipity"' elements.

7



The mesh generator constructs a mesh for Q using the physical domensions

(rt,h) of the domain S pictured in Figure 4a, the prescribed number of left

and right partitions, NI (Figure 4b) and N2 (Figures 4c and 4d), and the

specified aspect ratio a for the elements. In the course of generating this

mesh, two other integers (N3, N4) and a real number q (r<q<t) are computed

from this input data. N3 is the number of partitions of the side BD of

subdomain al (Figure 4b). N4 is the number of columns of elements in sub-

domain a3 (Figure 4d). q is the magnitude of side BD of subdomain 91" These

nine parameters (r, 1, h, Ni, N2, a, N3, N4 . and q) completely describe the

mesh constructed for 9. The original domain Q is then subdivided into three

subdomains al, S2 and s3 as shown in Figure 4a. The subdomains are Q, a

ABCD, 2 = CITE, and Q3 a FDHG.

The mesh of 91 is shown in Figure 4b. The side BD is divided into N3

intervals, thus determining N3 +1 grid points. (The method for determining N3

and q is described later in this section.) The arc AC is divided into N3

non-uniform intervals determined by the N3 angles 1'* *2 %.'"N3 and has N3+1

grid points along it determined by the intervals. The respective grid points

on BD and AC are connected by straight lines which in turn, are divided into

N equal intervals thus determining N1+1 grid points along each line. The

mesh of 9 1 is determined by these (NI+)(N3+1) grid points.

The angles *l,*2,... N and N3 are chosen such that the aspect ratio of

any element is approximately a. The procedure is as follows:

= N

where X is the approximate length of the line segment connecting the

respective grid points on AC and BD. ki is given by the formula

9. -t +
£ 0

8
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Figure 4c - The Mesh of Subdomairn Q2
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where t - CD is defined by

(r + )coso - h

and

to = AB h-r.

If is as I+ 2 +... I then for some integer j0 there will

T j which will be -f where B is the radial angle of subdomain QI in Figure 4b.jo

If N is the smallest integer j for which this is true, the angles i are
3 0

obtained by scaling down the i thus

The mesh in 92 is shown in Figure 4c. The sides EC and FD are divided

into N2 equal segments. The respective grid points on each side are connected

by straight lines each of which, in turn, is divided into N1 equal parts,

giving (N1+1)(N 2+1) grid points for the mesh of 2" The required aspect ratio

of the elements in Q2determines q. The angle y is obtained by solving
h

tan y - h

r -+(ry-) N1

(2

The mesh of Q3 is shown in Figure 4d. N4, the number of equal partitions

of both sides FG and DH, is determined by the aspect ratio a thus

N4

Since the sides FD and GH are both divided into N2 equal parts, there are

(N4 +1)(N2+1) grid points for 113 which, in turn, determine a uniform

rectangular mesh for S3'

The elements determined by the grid points of the mesh of n are

isoparametric with eight grid points; the mid-points are located in the middle

of the sides. When the side of an element is a circular arc, arc length is

used to locate the mid-point.

11



Table I presents the various meshes (number of elements and grid points)

generated for one value of r (.999) with different aspect ratios and several

choices of NI and N2 to show the dependence of the number of elements and DOF

on the parameters. The Table 1 cols headings are identified as follows:

I is the line number of the table

K is the microfiche identification number for the particular NASTRAN run

a is the aspect ratio

N1 is the number of the left hand partitions

N2 is the number of the right hand partitions
N2I Is the number of elements in the first subdomain al

is the number of elements in the second subdmain Q 2

%3 is the number of elements in the third subdomain Q 3

Na is the total number of elements in the domain

GP is the total number of grid points (nodes)

DO? is the number of degrees of freedom

TABLE 1 - MESHES GENERATED FOR R - 0.999 IN "PROBLEM I

I K NI  N 2 NSI I 2 N3 Np GP DOF

1 8 1.5 4 3 96 12 24 132 475 916
2 9 1.5 6 4 198 24 44 266 907 1766
3 10 1.5 8 5 336 40 70 446 1477 2892
4 17 1.0 12 8 1068 96 264 1428 4569 9022
5 18 1.0 8 5 480 40 100 620 2047 4020
6 19 1.0 4 3 132 12 362 186 645 1248
7 20 .75 12 8 1188 96 352 1636 5235 10332
8 21 .5 8 5 792 40 200 1032 3401 6688
9 22 .3 8 5 792 40 330 1162 3843 7520

Figure 5 shows a sample mesh for Problem 1.

Figure 5 - A Simple Mesh for Problem 1

12



4. NASTRAN RESULTS

In the solution of the two benchmark problems using NASTRAN, as shown

schematically in Figures I and 2, h - 1, Z - 6, p 1 1, and r was varied. The

results for Problem I are given in Table 2. The meanings of the column

headings are as previously defined with the following additions:

R is the radius of the circle whose arc is a side of domain Q.

SCF is the stress concentration factor E previously defined in the

text.

CP is the CYBER 7400 central processor time. (The CYBER 7400 is

essentially a CDC 6600.)

The asterisks on some of the stress concentration factors in Table 2 mean

that the maximum stress did not occur at the expected place (O,r) for that

NASTRAN solution.

The scheme of Problem 2 is given in Figure 2, and the parameters used

were h - 1,1 - 6, p - 1, r - .7 and X - .15. As noted before, Problem 2 was

solved in two different ways, that is, with and without quarter-point

elements. These results are presented in Tables 3a (all "serendipity"

elements - no quarter-point elements) and 3b (all "serendipity" elements

except for the two elements that have the tip of the crack for a vertex -

these are quarter-point elements). The column heading KK refers to the grid

point (node) at which the tip of the crack is located. i AX is the maximum

stress which is located at the tip of the crack. The other headings were

previously defined. It should be noted that the exact stresses are infinite

at the tip of the crack. Table 3c presents the results when the tip of the

crack for run 3S in Table 3b is perturbed from (0.,.85) to (0.,.868750).

As stated in Section 2, the stress intensity factor K can also be

computed by the energy release method of Equation 8. To make use of this

procedure the y-coordinate of the tip of the crack was perturbed from y - .85

(run 3S) to .868750 (run 4S) and Problem 2 was solved with NASTRAN for N, -

16, N2 - 12. This perturbation of the y-coordinate was easily effected by

taking the value of the KK parameter of the data generator DGNEW to be 19,

thus putting the tip of the crack on the extreme left hand grid-point conon

13



TABLE 2 - PROBLEM I RESULTS

I K R N N SCF SE x 107  GP Nil DOF CP

1 61 0.05 8 6 1.0 2.431 1.0009 899 266 1694 206
2 62 0.05 16 12 1.0 2.743 1.0009 3343 1048 6480 974

3 55 0.1 4 3 1.0 2.312 1.0037 252 67 452 70
4 56 0.1 8 6 1.0 2.624 1.0039 879 260 1656 202
5 57 0.1 16 12 1.0 2.746 1.0040 3267 1024 6332 951

6 52 0.2 4 3 1.0 2.437 1.0162 241 64 6432 68
7 53 0.2 8 6 1.0 2.545 1.0164 859 254 1618 197
8 54 0.2 16 12 1.0 2.544 1.0165 3241 1016 6284 941

9 49 0.3 4 3 1.0 2.384 1.0391 244 65 440 68
10 50 0.3 8 6 1.0 2.391 1.0394 845 250 1594 195
11 51 0.3 16 12 1.0 2.373 1.0394 3227 1012 6262 934

12 46 0.4 4 3 1.0 2.286 1.0761 244 65 440 68
13 47 0.4 8 6 1.0 2.264 1.0764 877 260 1660 201
14 48 0.4 16 12 1.0 2.254 1.0764 3301 1036 6414 959

15 37 0.5 4 3 1.0 2.198 1.1339 258 69 468 70
16 38 0.5 8 6 1.0 2.184 1.1341 903 268 1712 206
17 39 0.5 16 12 1.0 2.177 1.1341 3451 1084 6714 1013

18 40 0.6 4 3 1.0 2.145 1.2247 261 70 476 71
19 41 0.6 8 6 1.0 2.134 1.2249 935 278 1778 214
20 42 0.6 16 12 1.0 2.129 1.2249 3575 1124 6966 1009

21 32 0.7 4 3 1.0 2.107 1.3746 289 78 532 76
22 44 0.7 8 6 1.0 2.100 1.3748 993 296 1896 227
23 45 0.7 16 12 1.0 2.097 1.3748 3749 1180 7318 1124

24 1 0.8 4 3 1.5 2.078 1.6499 234 63 432 72
25 23 0.8 4 3 1.0 2.076 1.6501 306 83 568 88
26 2 0.8 6 4 1.5 2.074 1.6503 421 120 792 126
27 24 0.8 8 6 1.0 2.072 1.6504 1077 320 2066 307
28 25 0.8 16 12 1.0 2.071 1.6505 4073 1284 7970 1796

29 26 0.85 4 3 1.0 2.061 1.8943 320 87 596 91
30 27 0.85 8 6 1.0 2.058 1.8948 1155 346 2222 327
31 28 0.85 16 12 1.0 2.057 1.8948 4335 1368 8496 1919

32 3 0.9 4 3 1.0 2.045 2.3146 348 95 652 101
33 14 0.9 6 4 1.5 2.044 2.3149 467 134 886 139
34 29 0.9 8 6 1.0 2.043 2.3155 1239 372 2392 353
35 30 0.9 16 12 1.0 2.042 2.3156 4647 1468 9122 2105

14



TABLE 2 (continued)

I K R N1 N2  a SCF SEx 107  GP Nil DOF CP

36 4 0.95 4 3 1.5 2.024 3.2750 293 80 552 86
37 31 0.95 4 3 1.0 2.024 3.2794 404 ill 764 110
38 13 0.95 6 4 1.5 2.024 3.2802 547 158 1046 162
39 32 0.95 8 6 1.0 2.024 3.2824 1395 420 2704 403
40 33 0.95 16 12 1.0 2.024 3.2827 5209 1648 10248 2464

41 5 0.98 4 3 1.5 1.996 5.1580 335 92 636 97
42 34 0.98 4 3 1.0 2.006 5.1904 449 124 856 119
43 12 0.98 6 4 1.5 2.006 5.1939 627 182 1206 187
44 15 0.98 8 5 1.0 2.010 5.2105 1388 417 2700 459
45 35 0.98 8 6 1.0 2.010 5.2113 1583 478 3082 465
46 36 0.98 16 12 1.0 2.010* 5.2130 6021 1908 11874 2087

47 6 0.99 4 3 1.5 1.950 7.1511 363 100 292 104
48 58 0.99 4 3 1.0 1.983 7.2817 491 136 940 113
49 7 0.99 6 4 1.5 1.984 7.2923 687 200 1326 204
50 11 0.99 8 5 1.5 1.997 7.3459 1113 334 2164 356
51 59 0.99 8 6 1.0 2.004 7.3789 1765 534 3446 417
52 16 0.99 12 8 1.0 2.004* 7.3853 3467 1080 6818 1600

53 8 0.999 4 3 1.5 1.319* 17.2194 475 123 916 135
54 19 0.999 4 3 1.0 1.484 18.5617 645 180 1248 182
55 9 0.999 6 4 1.5 1.365 18.5919 907 266 1766 273
56 10 0.999 8 5 1.5 1.635* 19.9331 1477 446 2892 492
57 18 0.999 8 5 1.0 1.807 21.5183 2047 620 4020 618
58 21 0.999 8 5 0.5 1.915* 22.6040 3401 1032 6688 1200
59 22 0.999 8 5 0.3 1.940* 22.5819 3843 1162 7520 1400
60 17 0.999 12 8 1.0 1.928* 22.8096 4569 1428 9022 1876
61 20 0.999 12 8 0.75 1.950* 23.0445 5235 1636 10332 2295

*For these NASTRAN solutions the maximum stress did not occur at the expected
place (o,R).

15



TABLE 3 - PROBLEM 2 RESULTS

a. "SERENDIPITY" ELEMENTS

K K NI N2 o MAX SEx 10 7  GP Nil DOF CP1 2K

1 5 4 3 1 17.345 1.61776 289 78 536 76

2 9 8 6 1 23.853 1.63167 993 296 1904 227

3 17 16 12 1 33.832 1.64043 3749 1180 7334 1123

b. TWO OUARTER-POINT "SERENDIPITY" ELEMENTS*

K KK NI N a MAX SEx 107 GP NQ DOF CP

Is 5 4 3 1 73.936 1.64582 289 78 536 76

2S 9 8 6 1 94.836 1.64769 993 296 190 227

3S 17 16 12 1 131.71 1.64869 3711 1168 7260 1106

c. TWO QUARTER-POINT "SERENDIPITY" ELEMENTS AND PERTURBED TIP OF CRACK

K KK N1 N2 a aMAx  SEx 107 GP N1  DOF CF

4S 19 16 12 1 46.123 1.71764 3711 1168 7262 1106

* A very minor change in the algorithm for a in the data generator added an

extra tier of 12 elements in the second subdomain for the third solution of
Table 3b.
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to elements 9 and 10. Runs 3S and 4S gave 4.69723 as the value of K from

Equation (8).

The stress intensity factor K has also been computed by fitting the

singular behavior of the solution at the tip of the crack. Here Equations (1)

and (2) were used to obtain Equations (5) and (6) which can be used for

various choices of grid points and angles 0. Figure 6 shows the numbering

scheme used for these grid points in the computation of K1 .

3

Figure 6 - Numbering Scheme for Computation of K1

Table 4 gives the coordinates (in columns headed X and Y) and the

displacements (in columns headed U1 and U 2) of the grid points (in column

headed PT) required to compute KI.

The results from Problem 2 are presented in Tables 5 (all "serendipity"

elements) and 6 (two quarter-point elements). In these tables the column

headings I and 0 refer to Fu ()(I - 1) and F v(O)(I - 2) where 0 is the angle

of Figure 3. The grid point or points used are listed under the PT or PTS

heading, depending on whether the one-point formula, Equation (5), or

two-point formula, Equation (7), is used. For the two-point formula the C

column heading gives the ratio of the distance of the closest point to the

furthest point. The values of K are listed under the K1 heading.
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TABLE 4 - COORDINATES AND DISPLACEMENTS REOUIRED
TO COMPUTE THE RESULTS OF PROBLEM 2

a. ALL "SERENDIPITY" ELEMENTS, N1 - 4, N2 - 3

PT X Y U x 108  V x 107

4 0.0000 0.7750 6.5910 -2.2387
3 0.0000 0.8125 4.0986 -2.2318
0 0.0000 0.8500 0.0000 -2.2095
5 0.0000 0.8875 0.0000 -2.1496
6 0.0000 0.9250 0.0000 -2.0995
1 1.0424 0.8494 1.8248 -2.0111
2 2.0847 0.8488 3.2685 -1.8624

b. ALL "SERENDIPITY" ELEMENTS, N1 = 8, N2 = 6

PT Y U x 10 8  V x 107

4 0.0000 0.8125 4.6015 -2.3021
3 0.0000 0.8313 2.8135 -2.2906
0 0.0000 0.8500 0.0000 -2.2710
5 0.0000 0.8688 0.0000 -2.2245
6 0.0000 0.8875 0.0000 -2.1784
1 0.0265 0.8498 1.5205 -2.1175
2 0.0530 0.8495 2.6420 -2.0149

c. ALL "SERENDIPITY" ELEMENTS, N1 = 16, N2 = 12

PT X Y U x 108  V x 107

4 0.0000 0.8313 3.2419 -2.3407
3 0.0000 0.8406 1.9829 -2.3298
0 0.0000 0.8500 0.0000 -2.3133
5 0.0000 0.8594 0.0000 -2.2770
6 0.0000 0.8688 0.0000 -2.2395
1 0.0138 0.8499 1.1071 -2.2058
2 0.0276 0.8499 1.9128 -2.1407
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TABLE 4 (Continuee)

d. TWO QUARTER-POINT"SERENDIPITY" ELEMENTS, N1  4, N2  3

PT x Y U x 108  V x 107

4 0.0000 0.7750 7.2988 -2.3260
3 0.0000 0.8313 3.4097 -2.3460
0 0.0000 0.8500 0.0000 -2.3551
5 0.0000 0.8688 0.0000 -2.2649
6 0.0000 0.9250 0.0000 -2.1944
1 0.0216 0.8497 1.7230 -2.1774
2 0.0863 0.8488 3.7172 -1.9273

e. TWO OUARTER-POINT "SERENDIPITY" ELEMENTS, N1 - 8, N2 = 6

PT X Y U x 108  V x 107

4 0.0000 0.8125 5.0238 -2.3529
3 0.0000 0.8406 2.3685 -2.3590
0 0.0000 0.8500 0.0000 -2.3700
5 0.0000 0.8594 0.0000 -2.2995
6 0.0000 0.8875 0.0000 -2.2354
1 0.0135 0.8499 1.3565 -2.2297
2 0.0540 0.8495 2.9315 -2.0542

f. TWO-QUARTER-POINT "SERENDIPITY" ELEMENTS, N1  16, N2 ' 12

PT X Y U x 10 8  V x 10 7

4 0.0000 0.8313 3.4982 -2.3673
3 0.0000 0.8453 1.6639 -2.3673
0 0.0000 0.8500 0.0000 -2.3755
5 0.0000 0.8547 0.0000 -2.3234
6 0.0000 0.8688 0.0000 -2.2711
1 0.0070 0.8500 0.9697 -2.2740
2 0.0281 0.8499 2.0931 -2.1623
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TABLE 5 - PROBLEM 2 RESULTS (ALL "SERENDIPITY" ELEMENTS)

a. ONE POINT FORMULA RESULTS (5)

K1
PT NI=4,N2=3  NI=8,N2=6 NI=16,N2=12

3 1 3.14159 3.86277 3.97900 3.85003
4 1 3.14159 4.46716 4.52453 4.45891
1 1 1.57080 3.67993 3.49180 3.71401
2 1 1.57080 4.52145 4.42238 4.53724
1 2 1.57080 3.71509 3.79737 3.60747
2 2 1.57080 4.38273 4.69706 4.09439
5 2 0.00000 1.82550 1.66087 2.01358
6 2 0.00000 2.56794 2.15704 2.89432

b. TWO POINT FORMULA RESULTS (7)

PTS e K1
NIf4,N2=3 Nl=8,N2=f6 NI=16,N2=12

3,4 1 3.14159 0.50000 2.40364 2.66199 2.39939
1,2 1 1.57080 0.50000 1.64831 1.24517 1.726561,2 2 1.57080 0.50000 2.10324 1.62532 2.431965,6 2 0.00000 0.50000 0.03308 0.4630 -.11251
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TABLE 6 - PROBLEM 2 RESULTS (TWO QUARTER-POINT "SERENDIPITY" ELEMENTS)

a. ONE POINT FORMULA RESULTS (5)

K,

PT 1 6 NI=4,N2=3 NI=8,N2=6 NI=16,N2=12

3 1 3.13159 4.68128 4.59875 4.56916

4 1 3.14159 5.81036 4.87721 4.80282
1 1 1.57080 4.62042 4.59608 4.55982
2 1 1.57080 4.98413 4.96620 4.92133

1 2 1.57080 4.76799 4.81492 4.77368

2 2 1.57080 5.73636 5.34991 5.01356

5 2 0.00000 3.53653 3.91476 4.08655
6 2 0.00000 3.15213 3.73316 4.09673

b. TWO POINT FORMULA RESULTS (7)

TS N1 f4,N 2 3 NIm8,N 2 6 N1 f16,N 2 =42

3,4 1 3.14159 0.25000 4.35219 4.32029 4.33553

1,2 1 1.57080 0.25000 4.2567L 4.22597 4.19831
1,2 2 1.57080 0.25000 3.79162 4.27994 6.53379

5,6 2 0.0000 0.25000 3.92093 4.09636 4.07637
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5. DESCRIPTION OF FEARS COMPUTATION

Because, unlike NASTRAN, the FEARS program has a built-in data generator,

the input to FEARS consists merely of the basic data of the particular problem

to be solved:

" the description of the domain and the type of boundary conditions

" the coefficients of the pertinent partial differential equation of

plane elasticity

" the type of error norm used

" the type and amount of output desired.

The error norm used was the simplest one possible, i.e., the energy error

norm L for q - 2 and q - -. The input parameter p set to 1.0 specifies theq

L2 norm; p set to 0.0 specifies the L. norm. In the present case of plane

stress the strain energy density is defined as

Sa 2 + a2 _ a + 2(1+y)2 ]  (9)
U 2E + xx yy -2 xxyy y

where

a =- a +V 
1

xx 1 -Y2la ay

E = + Y au(~b
YY 1-y 2 lay TxJ (l0b)

xY - 2  + ax (10c)

The energy norm of the solution s - (uv) T with respect to the L2 norm is

defined by

IsIE,2 - 1IUI IL (1)
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and the energy norm of a with respect to the L. norm by

111 IE ,. - lIu lw . (12)

if e - (el,e 2)
T is the difference between the exact and the finite element

solution, the two energy error norms are given by Equations (11) and (12)

respectively.

FEARS uses elements of degree 1, that is for uniform meshes of size h and

a smooth solution the rate of convergence in the energy norm is 0(h) - 0( 1)
N

where N is the number of degrees of freedom.

6. FEARS RESULTS

In Problem 1 the user partitions the domain a into a set of two-

dimensional subdomains which are "curvilinear rectangles". The particular

choice of the 2-D subdomains can influence the solution in some way because it

can affect the aspect ratios of the elements of the mesh. This partition is

characterized by the coordinates of the vertices, the curvature of the lines!

joining the vertices, and the numbering of these vertices, lines, and sub-

domains. Figure 7 shows the partition of the domain oused for r - .98. The

vertices are identified by numbers in circles, the lines connecting the

vertices by ordinary numbers, and the subdomains by numbers in squares. The

coordinates of the vertices are given in Table 7.

The FEARS program then constructs adaptively a series of meshes with

respect to the error norm selected. The FEARS program at present provides the

stresses in the middle of the elements, and the stress concentration factor,

SCF, is computed according to the choice of the L2 (p-1.0) and L. (p=0.0)

energy error norms, respectively. In Table 8 the data for the next-to-last

and the last partitions are listed under the column headings "FIRST MESH" and

"SECOND MESH". The partition described under column heading "THIRD MESH" was

adaptively constructed but not computed due to program limitations.

Table 9 presents the energy error norm and the error in the stress

concentration factor (SCF) for solutions computed in the L2 adaptive mode, the

L, adaptive mode, and the solutions computed using uniform meshes. Again the
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TAJLE 7 - COORDINATES OF THE PARTITTON OF DOMAIN Q FOR PROBLEM I

I X y

1 0.0000 1.0000
2 0.1000 1.0000
3 0.2500 1.0000
4 0.5000 1.0000
5 1.0000 1.0000
6 2.0000 1.0000
7 3.5000 I.0OO0
8 6.0000 1.0000
9 6.0000 0.0000
10 3.5000 0.0000
11 0.9800 0.0000
12 0.6930 0.6930
13 0.4383 0.8765
14 0.2377 0.9507
15 0.0975 0.9751
16 0.0000 0.9800

TABLE 8 - UMBER OF ELEMENTS IN THE PARTITIONED DOMAIN
WITH RESPECT TO BOTH THE ADAPTIVE L2 AND L. MODES

Index of

2-D Subdomain Number of Elements in That 2-D Subdomain

FIRST MESH SECOND MESH THIRD MESH*

L2  L. L2  L. L2  L.

1 55 148 202 154 751 559
2 52 31 134 76 511 76
3 64 37 256 73 682 103
4 67 16 238 16 841 16
5 61 16 148 16 349 16
6 31 16 67 16 202 16
7 16 16 16 16 16 16

Total number
of Elements 346 280 1066 367 3352 802

DOF 782 636 2242 792

* Both of the meshes under the third mesh heading were adaptively
constructed but solutions were not computed due to program limitations.
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TABLE 9 - ERRORS IN THE ENERGY NORM AND THE STRESS CONCENTRATION FACTORS

a. FOR MESHES CONSTRUCTED IN THE ADAPTIVE L MODE
2

hel lelE2 ERROR SCF ERROR
NUMBER OF DOF 2E,2 Wwe I SCF SCF

ELEMENTS I C C

x10 4  x 100

346 782 1.1119 15.39 0.0922 4.58%
1066 2242 0.6476 8.96% 0.0325 1.62%

b. FOR MESHES CONSTRUCTED IN THE ADAPTIVE L. MODE

1111 ~ 2 RROR SCF ERROR
NUMBER OF DOF spE,2 siaE.2 ER 10

ELEMENTS lilE2 IN SCF SCF
x10 4  x 100 10

136 342 1.8876 26.14 0.1625 8.08
280 636 1.6874 23.36 0.0931 4.63%
367 792 1.5875 21.98 0.0501 2.49%

c. FOR UNIFORM MESHES

NMBER OF DoF tlel E,2 lIe IE 2 ERROR SC? ERROR

NUMER F ~IN SCF SC?
ELEMENTSx 104  x 100

x 1.00

112 290 1.9647 27.21% 0.3208 15.962
448 1026 1.0866 15.05% 0.1077 5.36%
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I

stress concentration factors are computed by extrapolation from stresses in

the center of the elements.

The energy error norm Ile llE,2 can be easily computed if the exact energy

is known. If cEXACT is the exact energy and c is the energy of the Finite
Element solution, then

lletIE,2 "EXACT

When the NASTRAN and FEARS results are extrapolated to the limit -C
-7 EXACT= 5.2130150 x 10 - . Similarly by extrapolation to the limit we obtain

SCEXACT - 2.0106. (The tilde notation indicates the extrapolated values of

eEXACT and SCFEXAC.)

Table 10 gives the error estimators for the energy norm I e wIE with

respect to the adaptive L2 mode and for uniform meshes.
Table II gives the error estimators, scaled in the same way as the stress

concentration factors, for the stress concentration factors with respect to
the L. norm and for the stress concentration factors for uniform meshes.

For consistent comparison the error extimator for the L 7 energy norm must
be compared with the actual error measured in the norm. Table 12 shows the
actual errors in the energy at the point (0,.98) and the error estimators with
respect to the adaptive L,. mesh and for uniform meshes, although the maximal
error has not necessarily occurred at this point.

Figure 8 shows a partition of the domain a for Problem 2. As in Problem

1, the vertices are identified by numbers in circles, the lines by ordinary

numbers,and the subdomains by numbers in squares. The coordinates of the
vertices are given in Table 13. The FEARS program requires that a vertex be

placed at the top of the crack.

Because the stresses are infinite at the tip of the crack, the only

adaptive mode that could be used is that of the L2 energy norm. By
extrapolation as before the exact energy of the solution was found to be
1.649701 x 10-7 . The energy release procedure for computing the stress
intensity factor K, using Equation (8) with respect to the L2 norm, requires

adaptivity with respect to that norm.

Z7
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TABLE 10 -ERROR~ ESTIMATORS AND THE ACTUAL ERROR IN THE ENERGY NORM

a.FOR MESHES CONSTRUCTED IN THE ADAPTIVE L 2 MODE

Number of Elements IlF ell 9 2  Efemo E) . Estimator
x .11 x 10

346 782 1.1119 1.0657 0.9584

1066 2242 0.6476 0.6461 0.9977

b. FORL UNIFORM MESHES

Number of Elements flOF 41l , Estimatt Estimator

x 04x10 _______________

112 290 1.9647 1.6878 0.8591
448 1026 1,0866 1.0293 0.9472

TABLE 11 - ERROR ESTIMATORS FOR THE STRESS CONCENTRATION FACTOR
AND THE ACTUAL ERROR

a. FOR MESHES CONSTRUCTED IN THE ADAPTIVE L. MODE

Number of Elements DOF Error in SCF Estimator 6 Esiao
Error in SCF

136 342 0.1625 0.3251 2.0006
280 636 0.0931 0.2090 2.2448
367 792 0.0502 0.1886 2.6617

b. FOR UNIFORM MESHES

Number of Elements DOF Error in SCF Estimator E - Estimator
Error in SCF

112 290 0.3208 0.5251 1.6369
448 1026 0.1077 0.3462 3.2144
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TABLE 12 - MAXIKAL ERRORS IN THE ENERGY AND THE ERROR ESTIMATES

a. FOR MESHES CONSTRUCTED IN THE ADAPTIVE La MODE

Number of DOF Actual Error x 10
3  Estimator x 10

3  . Estimator

Elements jllejIE,

136 342 2.2618 2.0987 0.9279
280 636 1.2365 1.3493 1.0913
367 792 1.1976 1.2172 1.0164

b. FOR UNIFORM MESHES WITH RESPECT TO Lo,

Number of DOF Actual Error x 103  Estimator x 10 - Estimator

Elements 1111E,.

112 290 3.9371 3.3896 0.8609
448 1026 2.4662 2.2349 0.9062

TABLE 13 - COORDINATES OF THE PARTITION
OF THE DOMAIN Q FOR PROBLM 2

x Y

1 0.0000 1.0000
2 0.2000 1.0000
3 0.8000 1.0000
4 2.0000 1.0000
5 6.0000 1.0000
6 6.0000 0.0000
7 0.7000 0.0000
8 0.4373 0.5466
9 0.3131 0.6261
10 0.1373 0.6864
11 0.0000 0.7000
12 0.0000 0.8500
13 0.1667 0.8335
14 0.3801 0.7603
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TABLE 14 - ERROR ESTIMATORS FOR MESHES CONSTRUCTEE IN THE ADAPTIVE L ,ODE

Step Number of Elements in 2-D's Number of DOF c x 106 )lle E, t le 2,2 Estimator
Elements E,2 T feTIW1ll7,1 2 3 4 5 6 7 x 10 4 x 100 F,2

1 16 16 16 16 16 16 16 112 274 0.1569 0.8975 22.09Z 0.6881
2 16 19 16 16 16 19 19 121 286 0.1579 0.8405 20.69% 0.8019
3 19 19 16 16 16 19 19 124 292 0.1583 0.8152 20.072 0.7953
4 22 25 16 16 16 43 34 172 376 0.1604 0.6796 16.73Z 0.8776
5 25 25 16 16 16 45 34 175 382 0.1606 0.6631 16.332 0.8756
6 40 37 34 16 31 64 46 268 566 0.1623 0.5177 12.74% 0.9323
7 43 37 34 16 31 64 46 271 572 0.1624 0.5063 12.46% 0.9350
8 55 46 46 16 43 67 58 331 674 0.1628 0.4611 11.35% 0.9473
9 58 46 46 16 43 67 58 334 680 0.1629 0.4547 11.19% 0.9493
10 187 112 160 16 145 238 166 1024 2024 0.1643 0.2647 6.51% 0.9626
11 187 118 160 16 145 238 166 1030 2034 0.1643 0.2599 6.40% 0.9878
12 190 118 160 16 145 238 166 1033 2040 0.1643 0.2568 6.332 0.9900

I I
II



Several versions of Problem 2 were solved. In the basic case, the tip of

the crack was placed on the nodal point with coordinates (0.,.85). Other

cases were obtained by varying the y-coordinate of the tip of the crack from

.85. (In the FEARS input this perturbation is effected by changing only one

number.)

The presence of the singularity causes a special situation in the

following sense. The construction of a completely optimal mesh sometimes

involves the refinement of a very small number of elements (possible only one)

at one step of the FEARS prccedure. This situation could be avoided by using

another FEARS command which increases the number of elements to be refined

essentially 41thout additional computer cost.

Table 14 shows how the sequence of meshes was created when complete

optimality of the meshes was desired. Table 15 gives the basic results for

the Finite Element solutions of Table 14.

Tables 15a and 15b show other sequences of meshes adaptively constructed

by strategies which avoid a small increase in the number of degrees of freedom

during mesh refinement. These strategies consist of inserting two (Table 15a)

or three (Table 15b) so-called "short passes" as required into the usual

adaptive mesh refinement procedure. Table 16 shows the performance of the

uniform meshes.

The stress intensity factor is computed by the energy method which

requires the meshes to be the same, topologically speaking. The special

features of the FEARS program provide a means for obtaining consistent meshes.

The length of the crack can be increased very slightly by altering the

y-coordinate of the vertex at the tip of the crack. The meshes can be so

constructed in an adaptive manner as to produce the same mesh (topologi-

cally speaking) as before. The number of the adaptive steps used to con-

struct this second mesh depends oz. how much the crack length is increased. A

very small increase in crack length extends the number of admissible steps and

decreases the error caused by approximating the derivative by a difference,

but it also could increase the effect of round-off error.

Table 17 shows the maximal number of elements in the topologically
Identical meshes for the basic case, the energy of the Finite Elpr t

solution, and the growth of the error estimators.
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TABLE 15 - MESHES CONSTRUCTED IN THE ADAPTIVE L2 MODE WITH
CURTAILMENT OF SMALL REFINEMENTS

a. BY USE OF TWO SHORT PASSES BETWEEN LONG PASSES

Step Number of Elements in 2-D's Number of DOF E x 106 II IE.2 2 e - Esti'ater

Elements 4 E,2 0
1 2 3 4 5 6 7 x 1100

1 46 46 46 16 46 64 46 310 640 0.1616 0.5841 14.38% 0.7806
2 49 58 46 16 46 64 55 334 688 0.1624 0.5079 12.50% 0.8979
3 70 73 55 16 52 91 79 445 880 0.1632 0.4190 10.31% 0.9357

b. BY USE OF THREE SHORT PASSES BETWEEN LONG PASSES

Step Number of Elemnts in 2-D's Number of DOF E x 106 Ije E2 e I.--, 2 Estimator
Elements UllE,2 ei=

1 2 3 4 5 6 7 x 104 x 100

1 46 34 16 16 25 55 37 229 474 0.1613 0.6094 15.00% 0.9019
2 157 151 97 22 112 223 157 919 1740 0.1640 0.3099 7.63% 0.9713

TABLE 16 - ERRORS AND ERROR ESTIMATORS FOR THE UNIFORM MESHES

& HaI IE 2 Estimtor
Step Number of Elements in 2-D's Number of DOF c x 10 e111 'E,2 =[ei

Elements x i04  z 100

1 2 3 4 5 6 7

1 16 16 16 16 16 16 16 112 274 0.1569 0.8975 22.09% 0.6881
2 64 64 64 64 64 64 64 448 994 0.1616 0.5809 14.29% 0.7197

I
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TABLE 17 - ENERGY AND ESTIMATED ERROR IN THE ENERGY WITH REFERENCE TO THE
LOCATION OF THE TIP OF THE CRACK FOR TOPOLOGICALLY IDENTICAL MESHES.

Y Number of DOF £ x 106 Error Estimator of the
Elements Error in the Energy x 10

0.8600 112 274 0.1601 0.4131
0.8400 124 292 0.1552 0.3900
0.8450 124 292 0.1567 0.4049

0.4860 124 292 0.1571 0.4079
0.8540 172 376 0.1617 0.3675
0.8492 271 572 0.1621 0.2224

0.8501 1030 2034 0.1643 0.0660

TABLE 18 - ENERGY AND COMPUTED ESTIMATE OF THE ERROR IN THE ENERGY
FOR THE CASE OF y = .85 6I

Number of Elements DOF E x 106 Error Estimator of the 8
Error in the Energy x I0

112 274 0.1569 0.3814
124 292 0.1583 0.4206

172 376 0.1604 0.3557
271 572 0.1624 0.2240
1030 2034 0.1643 0.0659

TABLE 19 - STRESS CONCENTRATION FACTOR K COMPUTED BY THE ENERGY
RELEASE APPROACH

Number of DOF K Estimator for Estimatox 100

Elements 1 the Error in K1  K1

0.8600 112 274 4.3928 0.2116 4.81%

0.8400 124 292 4.3036 0.2082 4.83%
0.8450 124 292 4.3479 0.2116 4.86%
0.8460 127 292 4 3569 0.2122 4.87%
0.8540 172 376 4.5175 0.1916 4.24%
0.8492 271 572 4.5961 0.1337 2.90%

0.8501 1030 2034 4.7224 0.0365 .77%
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Table 18 gives the energy and the error in the energy for the meshes of

Table 17 for the basic case of y - .85.

Equation (8) is now used to compute the stress intensity factor KI by

replacing the derivative with the one-sided difference. Table 19 gives the K1

factors and the computed estimators for various values of y.
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